

 European Organisation for Astronomical Research in the Southern Hemisphere

European Southern Observatory
Headquarters Garching

Karl-Schwarzschild-Straße 2
85748 Garching bei München

www.eso.org

Programme: E-ELT

Project/WP: E-ELT Telescope Control

Control GUI Developer Guidelines

Document Number: ESO-288608

Document Version: 1

Document Type: Manual (MAN)

Released On: 2018-04-30

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Owner: Schilling, Marcus

[Validated by PA/QA:] Kurlandczyk, Hervé

Validated by WPM: Kornweibel, Nick

Approved by PM: Kornweibel, Nick

 Name

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 2 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Authors

Name Affiliation

M. Schilling ESO

Change Record from previous Version

Affected
Section(s)

Changes / Reason / Remarks

All First version

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 3 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Contents
1. Introduction ... 5

1.1 Scope ... 5

1.2 Definitions and Conventions ... 5

1.2.1 Abbreviations and Acronyms ... 5

2. Related Documents ... 6

2.1 Applicable Documents .. 6

2.2 Reference Documents .. 6

3. All Control GUIs .. 7

3.1 Toolkit and Language ... 7

3.2 Libraries ... 7

3.3 Tooling ... 7

3.4 Concepts of User-Friendliness ... 8

3.4.1 Time to Point ... 8

3.4.2 Cognitive Load .. 8

3.4.3 Mental Map ... 9

3.4.4 Summary ... 10

3.5 Implementation ... 11

3.5.1 Custom Widgets .. 11

3.5.2 Widget Behaviour .. 11

3.5.3 Keyboard ... 11

3.5.4 Responsive ... 11

3.5.5 Progress/Cancel .. 12

3.5.6 Confirm ... 12

3.5.7 Colours .. 12

3.5.8 Help... 12

3.6 Implementation II (advanced) ... 13

3.6.1 Docking ... 13

3.6.2 Coordinated Views .. 14

4. Engineering GUIs .. 14

4.1 Tooling ... 14

4.2 Implementation ... 14

5. Instrument Control GUIs .. 15

5.1 Implementation ... 15

6. Operations GUIs ... 15

6.1 Implementation ... 15

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 4 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

7. How-To ... 16

7.1 App with two widgets and event handler (C++) ... 16

7.1.1 Starting the code editor ... 16

7.1.2 Creating a GUI application .. 16

7.1.3 Adding widgets .. 17

7.1.4 Adding an event handler .. 17

7.1.5 Starting the application .. 18

7.2 App with dynamically loaded UI (Python) .. 19

7.2.1 Creating the UI .. 19

7.2.2 Creating the application ... 19

7.2.3 Adding an event handler .. 20

7.2.4 Starting the application .. 20

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 5 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

1. Introduction

This document is the guidelines for developers writing applications with graphical user
interfaces for the control systems of the ELT.

It presents rules and recommendations for the behaviour and characteristics of ELT
Control GUIs, as well as examples of good GUIs, and explains the underlying human-
computer-interaction concepts.

It distinguishes between different kinds of Control GUIs, distinct by their scope and
audience, and refers to this as the “layer” of the GUI. In concrete terms, an Engineering
GUI is low layer, an Instrument Control GUI is middle layer, an Operations GUI is high
layer.

Chapter 3 applies to any ELT Control GUI.
Chapter 4 applies to Engineering GUIs.
Chapter 5 applies to Instrument Control GUIs.
Chapter 6 applies to Operations GUIs.

Chapter 0 provides How-To recipes and code examples.

1.1 Scope

This document presents guidelines for developers writing applications with graphical user
interfaces for the control systems of the ELT.

1.2 Definitions and Conventions

1.2.1 Abbreviations and Acronyms

The following abbreviations and acronyms are used in this document:

GUI Graphical User Interface

MVC Model-View-Controller implementation pattern

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 6 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

2. Related Documents

2.1 Applicable Documents

The following documents, of the exact version shown, form part of this document to the
extent specified herein. In the event of conflict between the documents referenced herein
and the content of this document, the content of this document shall be considered as
superseding.

2.2 Reference Documents

The following documents, of the exact version shown herein, are listed as background
references only. They are not to be construed as a binding complement to the present
document.

RD1 Qt 5 Documentation

http://doc.qt.io/

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 7 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3. All Control GUIs

In the current version, this document focuses on desktop-based Control GUIs.

3.1 Toolkit and Language

Control GUIs are developed on the Qt 5 toolkit.

Control GUIs are written in Python 3, or C++.

Python 3, using the PySide2 binding module, is the preferred choice.

C++ is required for a GUI component if any of the following applies:

• It has extraordinary performance needs.

• It is a custom widget. Note that a python binding should then be implemented, too.

3.2 Libraries

Third-party components to be integrated into a Control GUI must qualify as Qt plugins, i.e.
must be importable as plugins by Qt.

For automated tests, use the testing framework of the ELT Dev Env.

Usage of Qt Quick Controls 2 (since Qt 5.7) or Qt Labs Controls (in Qt 5.6) is currently not
allowed. This may change in a later version of this document. Qt Quick Controls v1 must
not be used.

3.3 Tooling

For designing the static parts of your application's GUI, we recommend use of the
graphical GUI builder Qt Designer. It comes integrated into the development editor Qt
Creator. See the How-To in this document (chapter 0) for an introduction to this tool.

By using the Qt Designer, you produce declarative GUI descriptions. The Qt Designer
stores them as XML files with “.ui” file extension. The “.ui” file can either be converted to
code, or an application can load it at run-time to dynamically create the GUI from it. Again,
see the How-To section (chapter 0) for an example. Good documentation on this topic is
available at http://doc.qt.io/qt-5/designer-using-a-ui-file.html.

http://doc.qt.io/qt-5/designer-using-a-ui-file.html

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 8 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.4 Concepts of User-Friendliness

This section outlines a few concepts from Human Computer Interface (HCI) research.

HCI is about efficiency of interaction:

• What format should the machine’s output have, so a human can easily consume it?

• What format should the machine’s input have, so a human can easily produce it?

One way to put it is that HCI strives to optimise the protocol between two data processing
systems, and draws its results from investigating the capabilities and weaknesses of the
human “hardware”.

3.4.1 Time to Point

Reduce the “Time to Point”
• Decrease distances that mouse has to travel
• Decrease amount of mouse-clicks necessary
• Offer keyboard shortcuts
• Offer mouse gestures

To succeed with "Time to Point", you need a good idea of the most common patterns of
use of your end-users. This is complicated by the fact that different users (Engineers,
Developers, Integrators, Operators, Astronomers) have very different needs. What makes
sense to you, may well be cumbersome for them. If you can, involve your end-users
during development.

3.4.2 Cognitive Load

Reduce the "Cognitive Load“ by offering information in a way humans can perceive it best.

Example:
The two figures below show the same information, the graphical view is much preferable.

Not great:

Value Minimum Current Maximum Upper Limit

MonPoint#1 12.2 41.7 52.0 60

MonPoint#2 14.7 45.3 58.3 70

Same info,
but better:

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 9 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.4.3 Mental Map

Help your user acquire a "Mental Map" of the system. Visualise the context of an item (like
a displayed value or an offered command) and its relation to other items. This does not
need to be graphical, but a graphical view is often a good choice.

Not great: Much better:

MonitorPoint Temp. (C) MonitorPoint Temp.(C)

MonPnt#1 12.4 MonPnt#16 14.2

MonPnt#2 13.2 MonPnt#17 13.2

MonPnt#3 13.7 MonPnt#18 12.4

MonPnt#4 12.7 MonPnt#19 12.2

MonPnt#5 12.0 MonPnt#20 13.2

MonPnt#6 7.4 MonPnt#21 6.6

MonPnt#7 13.2 MonPnt#22 12.4

MonPnt#8 12.4 MonPnt#23 7.4

MonPnt#9 12.2 MonPnt#24 7.9

MonPnt#10 12.4 MonPnt#25 7.1

MonPnt#11 13.2 MonPnt#26 23.2

MonPnt#12 12.4 MonPnt#27 21.2

MonPnt#13 12.2 MonPnt#28 13.2

MonPnt#14 12.5 MonPnt#29 12.6

MonPnt#15 12.6 MonPnt#30 12.7

The above figure is called a "Synoptic View".

Advanced synoptic views support features like:

• Interactivity

Examples for interaction methods: left-click to select, left-double-click to zoom and
centre, mouse-wheel for zooming in and out, middle-click to pan.

• Semantic Zooming
On zooming, displayed objects not only change in geometrical size, but also in
amount of information. On higher zoom levels, the view shows more detailed
information.

Example:
This GUI supports 3 levels of semantic zooming (all shown simultaneously in the
following figure, the purple arrows represent a zoom-in action). On the bird's eye
level, items are represented as colour-coded circles. When the user zooms closer,

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 10 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

the circles turn into squares showing 3 pieces of colour-coded information. Zooming
even more, the squares turn into block diagrams showing very detailed information.

3.4.4 Summary

The more relevant a system, the more important to prudently design its UI.

If you think …
• my users are power users, they can master steep a learning curve
• I have no time to make it user-friendly, I’m busy making it stable

we would reply …

users will make more mistakes and fail to react quickly to problems
• when they are cognitively overwhelmed by an over-crowded UI
• when they are impeded by tedious UI navigation in a difficult-to-use UI

Take-aways:
• Know your end-users and their patterns of use
• Present information visually and give context
• Provide keyboard shortcuts for frequent commands
• Use screen space in smart ways

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 11 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.5 Implementation

As an application programmer, you have to make sure your application has the following
behaviour and characteristics. The ELT GUI Infrastructure provides features to help with
this.

3.5.1 Custom Widgets

Your application should only use widgets from the common widget library provided by the
ELT GUI Infrastructure.

You may develop and use a custom widget, if none of the existing widgets comes near
your needs. In this case, you are required to suggest your widget for addition to the
common widget library. If accepted, it can be reused by other ELT developers.

3.5.2 Widget Behaviour

Your application must show the same behaviour for a given widget as all other ELT
Control GUIs.

A bad example are two applications using two competing kinds of list boxes with slightly
different behaviour: one list box triggers an action instantly on selection, while the other
triggers only on selection and pressing Enter. This leads to usage errors.

3.5.3 Keyboard

Your application should support keyboard (mouse-less) operations.

Provide keyboard shortcuts (aka. hotkeys) for frequently used commands. Some
technologies, like plots, do hardly allow mouse-less operation. But if your application
provides keyboard shortcuts, it must follow the conventions that are already established in
other ELT Control GUIs, i.e. use the same shortcut for a given functionality.

Example
See http://doc.qt.io/qt-5/qshortcut.html
Note: From Qt 5.7, you can assign a shortcut to a button directly via its widget properties.

3.5.4 Responsive

Your application must not freeze.

GUI freezes are caused by implementation mistakes, often by hogging the GUI event
pump with long-running operations like a network call. This makes the GUI completely
unresponsive, including no more updates to its display.

Your application should not take longer than 0.3 seconds to process a single user input.
Longer processing needs to run decoupled, by using multi-threading or another
asynchronous mechanism. This needs to be kept in mind from the beginning of the
implementation.

http://doc.qt.io/qt-5/qshortcut.html

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 12 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.5.5 Progress/Cancel

Your application should show a progress-indicator (e.g. a progress bar) for long-running
operations, and should also offer to cancel such operations.

Example
http://doc.qt.io/qt-5/qprogressbar.html

Example 2 (including Cancel)
http://doc.qt.io/qt-5/qprogressdialog.html

3.5.6 Confirm

Your application should get user confirmation, e.g. via pop-up, before doing an irreversible
or expensive (or expensive to revert) operation. Otherwise, one wrong click can cost your
users a lot of time.

Your application must get user confirmation for an action that concerns safety, such as the
propagation of a laser beam.

Example

from PySide2.QtWidgets import QMessageBox

if (QMessageBox.No ==

 QMessageBox.question (self, "Confirm", "Shutdown")):

 return

Example C++

#include <QMessageBox>

if (QMessageBox::No ==

 QMessageBox::question (this, "Confirm", "Shutdown") {

 return;

}

3.5.7 Colours

Your application must use the foreseen colour schemes provided by the ESO framework.
Provided colour schemes (high-contrast and colour-blind, day/night switch) cater for
visually impaired users and improve ergonomics.

3.5.8 Help

Your application must use the ELT GUI Infrastructure's mechanism for creation and
display of documentation.
Every control must be covered by the documentation, unless the control's functionality is
obvious.

http://doc.qt.io/qt-5/qprogressbar.html
http://doc.qt.io/qt-5/qprogressdialog.html

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 13 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

In some existing GUIs, users are unsure about (or have forgotten) the effects of some
parts of their complex user interface, e.g. what certain buttons will do to the system. We
do not require that you document all controls - those that are obvious may be omitted.

3.6 Implementation II (advanced)

3.6.1 Docking

Whereas some GUIs serve their purpose perfectly fine with an immutable fixed
arrangement of widgets, others benefit greatly from letting the user rearrange widgets at
run-time.

So-called docking gives end-users some control over which information they want to see,
and where. It lets users rearrange, add, or remove parts of the GUI, in order to save
screen space or reduce the visual noise.

Docking is usually desirable when a GUI displays large amounts of information: the more
information the less likely that all of it is interesting to all users at all times.

Example
In this example, implemented using a QDockWidget ("Dock Widget" in Qt Designer), the
user can remove the “Device Control” widget by clicking on the tiny “X” icon.

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 14 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

3.6.2 Coordinated Views

Coordination of Views means that performing a user action in one panel triggers an
associated action in another panel.

An example being an IDE that shows two sub-windows side by side: a file system browser
and an editor window. When the user clicks on an entry in the file system browser, the
editor accordingly shows that file.

This user-friendly feature can greatly reduce the amount of clicks, and simplify the user's
navigation in the data space presented by your GUI.

Depending on the scenario, applications can let the user switch the coordination on and
off, or have it always on.

In advanced setups like operator consoles, coordination of views not only happens
between the internal views of one application, but also between separate GUI
applications. The ELT GUI Infrastructure is currently not ready to support this, but this is
expected to change in a future version.

4. Engineering GUIs

With Engineering GUIs, we denote Control GUIs for Engineers or Developers.

For hardware, they allow a hardware engineer to access the full set of properties and all
commands of a device.

For software, they enable a software developer to access logs and other debug data and
often to backdoor functions of a software module.

4.1 Tooling

At this time, the ELT GUI Infrastructure does not provide dedicated tooling for Engineering
GUIs. So they are developed with the same tooling as every other Control GUI. This is
expected to change in the future.

4.2 Implementation

Engineering GUIs are written by power users for power users.

While we always discourage to throw Engineering GUIs at users from higher layers,
experience shows that it is likely to happen - at least temporarily while higher-layer GUIs
have not been fully developed.

Please keep this creep-up effect in mind while developing an Engineering GUI.

- Use Docking (section 3.6)

- Design your application so dangerous interactions can be disabled.

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 15 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

5. Instrument Control GUIs

With Instrument Control GUIs, we denote Control GUIs for instrument developers and
integrators.

They allow a developer or integrator to understand the status of an instrument, and verify
the interworking between the instrument’s devices.

5.1 Implementation

Instrument Control GUIs are recommended to employ the advanced usability concepts
described in section 3.4.

6. Operations GUIs

With Operations GUIs, we denote Control GUIs for Operators and Astronomers on Duty.

They allow an operator to understand the high-level status of hardware and software, and
to dig into problems of hard-/software in an ad-hoc and quick manner.

They allow an astronomer to understand the status, efficiency, and potentially quality of a
running observation.

We strongly discourage to throw Engineering GUIs at Operators and Astronomers:
• Often not user-friendly enough, and do not represent the production procedures.
• Typically let the user do changes dangerous to the system stability.
• Sometimes not good citizens, causing high network load and system stress.

6.1 Implementation

Operational GUIs are strongly recommended to employ all advanced usability concepts
described in section 3.4.

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 16 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

7. How-To

7.1 App with two widgets and event handler (C++)

7.1.1 Starting the code editor

On a host with the ELT Development Environment installed, on a terminal, type:

> qtcreator &

This will bring up Qt Creator, the Qt code development tool:

7.1.2 Creating a GUI application

Create a new project of type Qt Widgets Application, with Name “Demo1”.

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 17 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

7.1.3 Adding widgets

After the project is created, open the mainwindow.ui file.

This will open the Qt Designer, and show an empty grey form.

From the component collection on the left, drag a Grid Layout, a Push Button, and a

LCD Number onto the grey empty form.

You set the caption of the button in the widget properties on the lower right, look for
QAbstractButton/text (i.e. "text" in the "QAbstractButton" section).

Note: In the widget properties, do not modify those settings that have an effect on the look
and feel of the widgets: palette, styleSheet, etc.

7.1.4 Adding an event handler

On the LCD Number widget, set the QObject/objectName property to "numberA".

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 18 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

On the Push Button widget,  right-click  "Go to slot" will bring up the following

information:

Selecting the first entry takes you back to the code editor.

At the cursor prompt, type:

ui->numberA->display("2018");

7.1.5 Starting the application

Pressing the green "Play" button at the bottom left will run your application.

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 19 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

Congratulations!

7.2 App with dynamically loaded UI (Python)

7.2.1 Creating the UI

We start from the demo project described in the previous How-To. It already provides us
with a “.ui” file that we will use in the following.

7.2.2 Creating the application

In Qt Creator, on the “Demo1” top-level node in the project tree, right-click  “Add New…”
 Python  Python File. For Name, enter “main.py”.

The new file “main.py” opens in the editor window. Type:

import sys

from PySide2.QtUiTools import QuiLoader

from PySide2.QtWidgets import Qapplication

from PySide2.QtCore import Qfile

from PySide2 import QtCore

if __name__ == "__main__":

 app = QApplication(sys.argv)

 file = QFile("mainwindow.ui")

 file.open(QFile.ReadOnly)

 loader = QUiLoader()

 window = loader.load(file)

 window.show()

 # ... more code to come ...

 sys.exit(app.exec_())

Control GUI Developer Guidelines

 Doc. Number: ESO-288608

 Doc. Version: 1

 Released on: 2018-04-30

 Page: 20 of 20

Document Classification: ESO Internal [Confidential for Non-ESO Staff]

7.2.3 Adding an event handler

Your python application is now already able to construct the widget tree from your “.ui” file
and render it on screen. The C++ event handler that you created in the previous How-To
is not part of your python application, and needs to be re-done. Here’s how:

In “main.py” after the placeholder comment, type:

 # ... more code to come ...

 numberA = window.findChild (QtCore.QObject,"numberA")

 pushButton = window.findChild (QtCore.QObject,"pushButton")

 def set_number():

 numberA.display("2018")

 pushButton.clicked.connect (set_number)

7.2.4 Starting the application

On a terminal, in directory “Demo1”, type:

> python main.py

All done!

.oOo.

	1. Introduction
	1.1 Scope
	1.2 Definitions and Conventions
	1.2.1 Abbreviations and Acronyms

	2. Related Documents
	2.1 Applicable Documents
	2.2 Reference Documents

	3. All Control GUIs
	3.1 Toolkit and Language
	3.2 Libraries
	3.3 Tooling
	3.4 Concepts of User-Friendliness
	3.4.1 Time to Point
	3.4.2 Cognitive Load
	3.4.3 Mental Map
	3.4.4 Summary

	3.5 Implementation
	3.5.1 Custom Widgets
	3.5.2 Widget Behaviour
	3.5.3 Keyboard
	3.5.4 Responsive
	3.5.5 Progress/Cancel
	3.5.6 Confirm
	3.5.7 Colours
	3.5.8 Help

	3.6 Implementation II (advanced)
	3.6.1 Docking
	3.6.2 Coordinated Views

	4. Engineering GUIs
	4.1 Tooling
	4.2 Implementation

	5. Instrument Control GUIs
	5.1 Implementation

	6. Operations GUIs
	6.1 Implementation

	7. How-To
	7.1 App with two widgets and event handler (C++)
	7.1.1 Starting the code editor
	7.1.2 Creating a GUI application
	7.1.3 Adding widgets
	7.1.4 Adding an event handler
	7.1.5 Starting the application

	7.2 App with dynamically loaded UI (Python)
	7.2.1 Creating the UI
	7.2.2 Creating the application
	7.2.3 Adding an event handler
	7.2.4 Starting the application

		2018-04-30T15:11:47+0200
	Released by ESO PDM SYSTEM

